Parallel lines are at the same angle and will never cross... like two railroad tracks. It doesn't matter what direction the lines travel. As long as they are going the same way, they are parallel. In mathematical terms, two lines are said to be parallel if they have the exact same slope.

Remember our equation for a line, y = mx + b. Two parallel lines, each defined by their own equation, will have the same value for m, the slope. So, y = 3x + 5 and y = 3x + 200 are parallel lines (they differ in their y-intercepts, but they have the same slope m). You can plot this out for yourself quickly to see that this is indeed the case.

The opposite of parallel lines are perpendicular lines. But

**how can you determine if two lines are perpendicular**? Perpendicular lines have a bit of a twist to them. Two lines are perpendicular if they cross (remember, any two straight lines that are NOT parallel will cross at only a single point. They cannot ever intersect again unless they curve back on themselves, in which case they are not straight!) and they form a 90 degree angle, or rather, a T-shape. For example: The x-axis and y-axis are perpendicular to each other. Mathematically, if line 1 has a slope of m

_{1}, then a perpendicular line 2 will have a slope m

_{2}=(-1/m

_{1})... that is, it's slope will be the negative inverse of the first.

Try it out... y = 2x + 1 and y = (-1/2)x + 5... m

_{1}= 2 and m

_{2}= (-1/2). Check it out on the graph to see that they indeed form a 90 degree angle where they intersect. If you don't believe that this is correct, go get a protractor and measure it for yourself! You can then convince yourself that the relationship holds true.

Also of interest to you: the symbol for "perpendicular" is ┴, an upside-down capital T, whereas the symbol for "parallel" is two vertical lines next to each other, like ||. You would write AB┴CD to say that AB is perpendicular to CD, and similarly AB||CD to say that they are parallel.

So, I've shown you that to in order to determine if lines are parallel or perpendicular, all you need to know is their slopes! If you know the equations of the lines, then this is only a matter of simply reading the m value, or at the worst, performing some basic mathematical rearrangements to find this info. And once you have the numbers, you can easily see if either relationship applies. This is much faster than manually creating a table of values and plotting out the graphs by hand! Now, you should have no problem answering questions that ask you to quickly identify true parallel or perpendicular line relationships! If this post helped solve your questions, please remember to do me a favor and click the +1 button below to help me get the word out! Thanks!